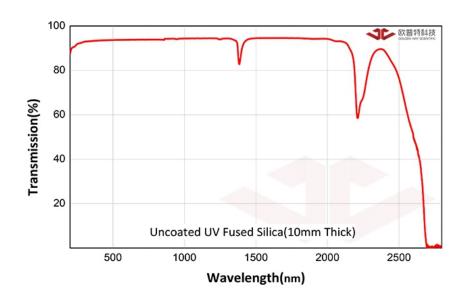


ОПТИЧЕСКИЕ КЛИНЬЯ ИЗ ПЛАВЛЕННОГО КВАРЦА

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

www.lasercomponents.ru +7 (495) 845-12-10 Юридический адрес: 117105, г. Москва, Варшавское шоссе, д. 9, стр. 1Б, этаж 5, комн. 504 т/ф: +7 (495) 845-12-10 www.lasercomponents.ru


Оптические клинья из плавленного кварца

Оптические клинья отклоняют падающий пучок лучей в заданном направлении на определенный угол. Они применяются в оптических устройствах для измерения малых смещений изображения путем перемещения его вдоль оптической оси или вращения перпендикулярно к оси.

Основные характеристики:

- Материла: плавленый кварц;
- Допуск на диаметр: +0/-0,1 мм;
- Допуск на толщину: ±0,2 мм;
- Клин: 30'±10';
- Точность формы поверхности: $\lambda/10$ @ 633 нм;
- Чистота поверхности: 20/10;
- Коэффициент пропускания материала:

Юридический адрес: 117105, г. Москва, Варшавское шоссе, д. 9, стр. 1Б, этаж 5, комн. 504 т/ф: +7 (495) 845-12-10 www.lasercomponents.ru

Спецификация:

Номер	Диаметр,	Наибольшая	Покрытие
	MM	толщина, мм	
GW24-012	12,5	3	-
GW24-012A	12,7	3	-
GW24-025	25	6	-
GW24-025A	25,4	6	-
GW24-038	38,1	10	-
GW24-050	50	10	-
GW24-050A	50,8	10	-
GW24-012-UV	12,5	3	UV AR $\rho_{avg} < 0.5\%$ @ $\lambda = (250-400)$ HM
GW24-012A-UV	12,7	3	UV AR ρ_{avg} <0,5% @ λ = (250-400) HM
GW24-025-UV	25	6	UV AR $\rho_{avg} < 0.5\%$ @ $\lambda = (250-400)$ HM
GW24-025A-UV	25,4	6	UV AR ρ_{avg} <0,5% @ λ = (250-400) HM
GW24-038-UV	38,1	10	UV AR ρ_{avg} <0,5% @ λ = (250-400) HM
GW24-050-UV	50	10	UV AR ρ_{avg} <0,5% @ λ = (250-400) HM
GW24-050A-UV	50,8	10	UV AR ρ_{avg} <0,5% @ λ = (250-400) HM
GW24-012-VIS	12,5	3	VIS AR ρ_{avg} <0,5% @ λ = (350-700) HM
GW24-012A-VIS	12,7	3	VIS AR ρ_{avg} <0,5% @ λ = (350-700) нм
GW24-025-VIS	25	6	VIS AR ρ_{avg} <0,5% @ λ = (350-700) нм
GW24-025A-VIS	25,4	6	VIS AR ρ_{avg} <0,5% @ λ = (350-700) нм
GW24-038-VIS	38,1	10	VIS AR ρ_{avg} <0,5% @ λ = (350-700) нм
GW24-050-VIS	50	10	VIS AR ρ_{avg} <0,5% @ λ = (350-700) нм
GW24-050A-VIS	50,8	10	VIS AR ρ_{avg} <0,5% @ λ = (350-700) нм
GW24-012-NIR	12,5	3	NIR AR ρ_{avg} <0,5% @ λ = (600-1100) HM
GW24-012A-NIR	12,7	3	NIR AR ρ_{avg} <0,5% @ λ = (600-1100) HM
GW24-025-NIR	25	6	NIR AR ρ_{avg} <0,5% @ λ = (600-1100) HM
GW24-025A-NIR	25,4	6	NIR AR ρ_{avg} <0,5% @ λ = (600-1100) HM
GW24-038-NIR	38,1	10	NIR AR ρ_{avg} <0,5% @ λ = (600-1100) HM
GW24-050-NIR	50	10	NIR AR ρ_{avg} <0,5% @ λ = (600-1100) HM
GW24-050A-NIR	50,8	10	NIR AR ρ_{avg} <0,5% @ λ = (600-1100) HM
GW24-012-SWIR	12,5	3	SWIR AR ρ_{avg} <0,5% @ λ = (900-1700) HM
GW24-012A-SWIR	12,7	3	SWIR AR ρ_{avg} <0,5% @ λ = (900-1700) HM
GW24-025-SWIR	25	6	SWIR AR ρ_{avg} <0,5% @ λ = (900-1700) HM
GW24-025A-SWIR	25,4	6	SWIR AR ρ_{avg} <0,5% @ λ = (900-1700) HM
GW24-038-SWIR	38,1	10	SWIR AR ρ_{avg} <0,5% @ λ = (900-1700) HM
GW24-050-SWIR	50	10	SWIR AR ρ_{avg} <0,5% @ λ = (900-1700) HM
GW24-050A-SWIR	50,8	10	SWIR AR ρ_{avg} <0,5% @ λ = (900-1700) HM

www.lasercomponents.ru +7 (495) 845-12-10 117105, г. Москва, Варшавское шоссе, д.9, стр.1Б, офис 504 sales@lasercomponents.ru